Identification of protein-arginine N-methyltransferase as 10-formyltetrahydrofolate dehydrogenase.

نویسندگان

  • S Kim
  • G H Park
  • W A Joo
  • W K Paik
  • R J Cook
  • K R Williams
چکیده

S-Adenosylmethionine:protein-arginine N-methyltransferase (EC 2.1.1. 23; protein methylase I) transfers the methyl group of S-adenosyl-L-methionine to an arginine residue of a protein substrate. The homogeneous liver protein methylase I was subjected to tryptic digestion followed by reverse phase high performance liquid chromatography (HPLC) separation and either "on-line" mass spectrometric fragmentation or "off-line" Edman sequencing of selected fractions. Data base searching of both the mass spectrometric and Edman sequencing data from several peptides identified the protein methylase as 10-formyltetrahydrofolate dehydrogenase (EC 1.5.1.6; Cook, R. J., Lloyd, R. S., and Wagner, C. (1991) J. Biol. Chem. 266, 4965-4973; Swiss accession number). This identification was confirmed by comparative HPLC tryptic peptide mapping and affinity chromatography of the methylase on the 5-formyltetrahydrofolate-Sepharose affinity gel used to purify the dehydrogenase. The purified rat liver methylase had approximately 33% of the 10-formyltetrahydrofolate dehydrogenase and 36% of the aldehyde dehydrogenase activity as compared with the recombinant dehydrogenase, which also had protein methylase I activity. Polyclonal antibodies against recombinant dehydrogenase reacted with protein methylase I purified either by polyacrylamide gel electrophoresis or 5-formyltetrahydrofolate affinity chromatography. In each instance there was only a single immunoreactive band at a molecular weight of approximately 106,000. Together, these results confirm the co-identity of protein-arginine methyltransferase and 10-formyltetrahydrofolate dehydrogenase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells.

Type I protein arginine methyltransferases catalyze the formation of asymmetric omega-N(G),N(G)-dimethylarginine residues by transferring methyl groups from S-adenosyl-L-methionine to guanidino groups of arginine residues in a variety of eucaryotic proteins. The predominant type I enzyme activity is found in mammalian cells as a high molecular weight complex (300-400 kDa). In a previous study, ...

متن کامل

Covalent binding of acetaminophen to N-10-formyltetrahydrofolate dehydrogenase in mice.

The analgesic acetaminophen is frequently used as a model chemical to study hepatotoxicity; however, the critical mechanisms by which it produces toxicity within the cell are unknown. It has been postulated that covalent binding of a toxic metabolite to crucial proteins may inhibit vital cellular functions and may be responsible for, or contribute to, the hepatotoxicity. To further understand t...

متن کامل

Disruption of a calmodulin central helix-like region of 10-formyltetrahydrofolate dehydrogenase impairs its dehydrogenase activity by uncoupling the functional domains.

10-Formyltetrahydrofolate dehydrogenase (FDH) is composed of three domains and possesses three catalytic activities but has only two catalytic centers. The amino-terminal domain (residue 1-310) bears 10-formyltetrahydrofolate hydrolase activity, the carboxyl-terminal domain (residue 420-902) bears an aldehyde dehydrogenase activity, and the full-length FDH produces 10-formyltetrahydrofolate deh...

متن کامل

PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits.

The mammalian protein arginine methyltransferase 3 (PRMT3) catalyzes the formation of asymmetric (type I) dimethylarginine in vitro. As yet, natural substrates and cellular pathways modulated by PRMT3 remain unknown. Here, we have identified an ortholog of PRMT3 in fission yeast. Tandem affinity purification of fission yeast PRMT3 coupled with mass spectrometric protein identification revealed ...

متن کامل

Identification and characterization of two closely related histone H4 arginine 3 methyltransferases in Arabidopsis thaliana.

Arginine methylation of histone H3 and H4 plays important roles in transcriptional regulation in eukaryotes such as yeasts, fruitflies, nematode worms, fish and mammals; however, less is known in plants. In the present paper, we report the identification and characterization of two Arabidopsis thaliana protein arginine N-methyltransferases, AtPRMT1a and AtPRMT1b, which exhibit high homology wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 42  شماره 

صفحات  -

تاریخ انتشار 1998